Mutaciones en los genes NPM1, IDH1 e IDH2 en pacientes paraguayos con leucemia mieloide aguda

Autores/as

  • Lady Franco-Benegas Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, Departamento de Genética Molecular, San Lorenzo, Paraguay.
  • Maria Paz Mujica Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, Programa de Post-grado de Maestría en Ciencias Biomédicas, San Lorenzo, Paraguay.
  • Valerie Jolly Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, Departamento de Genética Molecular, San Lorenzo, Paraguay.
  • Victor Salinas Instituto de Previsión Social, Hospital Central Emilio Cubas, Departamento de Hematología, Asunción, Paraguay
  • Jose Zarza Universidad Nacional de Asunción, Facultad de Ciencias Médicas, Hospital de Clínicas, Departamento de Hematología Adultos, San Lorenzo, Paraguay.
  • Diana Gonzalez Instituto de Previsión Social, Hospital Central Emilio Cubas, Departamento de Hematología, Asunción, Paraguay.
  • Denisse Di Tore Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, Departamento de Genética Molecular, San Lorenzo, Paraguay.
  • Laura Morel Instituto de Previsión Social, Hospital Central Emilio Cubas, Departamento de Hematología, Asunción, Paraguay.
  • Juan Jose Bogado Instituto de Previsión Social, Hospital Central Emilio Cubas, Departamento de Hematología, Asunción, Paraguay.
  • Monica Labrano Instituto de Previsión Social, Hospital Central Emilio Cubas, Departamento de Hematología, Asunción, Paraguay.
  • Samadi Leiva Instituto de Previsión Social, Hospital Central Emilio Cubas, Departamento de Hematología, Asunción, Paraguay.
  • José Manuel Ovando Instituto de Previsión Social, Hospital Central Emilio Cubas, Departamento de Hematología, Asunción, Paraguay.
  • Rodrigo Santacruz Universidad Nacional de Asunción, Facultad de Ciencias Médicas, Departamento de Hematología Adultos, San Lorenzo, Paraguay.
  • Miguel Britez Instituto de Previsión Social, Hospital Central Emilio Cubas. Departamento de Hematología, Asunción, Paraguay.
  • Ana Ayala-Lugo `Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, Departamento de Genética Molecular, San Lorenzo, Paraguay.

DOI:

https://doi.org/10.52379/mcs.v9.591

Palabras clave:

Leucemia Mieloide Aguda, NPM1, IDH1, IDH2, diagnóstico molecular

Resumen

Introducción: La leucemia mieloide aguda (LMA) surge a partir de la expansión clonal de blastos mieloides en sangre periférica, médula ósea u otros tejidos. Su etiología se encuentra asociada al desarrollo de mutaciones genéticas. La identificación de mutaciones potencialmente accionables es de relevancia clínica en el diagnóstico, pronóstico y tratamiento de la LMA. Objetivo: Identificar y describir el perfil de mutaciones en los genes NPM1, IDH1 e IDH2 en pacientes paraguayos con diagnóstico de LMA. Metodología: Se realizó un estudio retrospectivo epidemiológico molecular en 32 muestras de pacientes con LMA portadores de mutaciones en el gen NPM1. La detección de variantes genéticas se llevó a cabo mediante PCR en tiempo real y secuenciación Sanger. Resultados: La mutación de NPM1 más frecuentemente detectada fue la de tipo A, identificada en el 94% (30/32) de los casos. Además, se encontraron mutaciones en IDH1 e IDH2 en el 40% (13/32) de los casos, siendo la variante IDH2 R140Q la más predominante. La co-ocurrencia más frecuente se observó entre mutaciones en NPM1 e IDH2. Conclusión: Este estudio proporciona información relevante sobre el perfil de mutaciones en NPM1, IDH1 e IDH2 en la LMA en Paraguay, resaltando la importancia de estos marcadores tanto en la estratificación en grupo de riesgo como en el potencial beneficio de terapias dirigidas.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

1. Dohner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373(12):1136-52. https://doi.org/10.1056/NEJMra1406184

2. Kishtagari A, Levine RL, Viny AD. Driver mutations in acute myeloid leukemia. Curr Opin Hematol. 2020;27(2):49-57. https://doi.org/10.1097/MOH.0000000000000567

3. Society AC. Cancer Facts & Figures: American Cancer Society; 2024 Available from: https://www.cancer.org/cancer/types/acute-myeloid-leukemia/about/key-statistics.html

4. Kayser S, Levis MJ. The clinical impact of the molecular landscape of acute myeloid leukemia. Haematologica. 2023;108(2):308-20. https://doi.org/10.3324/haematol.2022.280801

5. Fenwarth L, Duployez N. Genomics has more to reveal. Oncotarget. 2024; 15:400-1. https://doi.org/10.18632/oncotarget.28596

6. Snaith O, Poveda-Rogers C, Laczko D, Yang G, Morrissette JJD. Cytogenetics and genomics of acute myeloid leukemia. Best Pract Res Clin Haematol. 2024;37(1):101533. https://doi.org/10.1016/j.beha.2023.101533

7. Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200-28. https://doi.org/10.1182/blood.2022015850

8. Li JF, Cheng WY, Lin XJ, Wen LJ, Wang K, Zhu YM, et al. Aging and comprehensive molecular profiling in acute myeloid leukemia. Proc Natl Acad Sci U S A. 2024;121(10): e2319366121. https://doi.org/10.1073/pnas.2319366121

9. Mo Q, Yun S, Sallman DA, Vincelette ND, Peng G, Zhang L, et al. Integrative molecular subtypes of acute myeloid leukemia. Blood Cancer J. 2023;13(1):71. https://doi.org/10.1038/s41408-023-00836-4

10. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352(3):254-66. https://doi.org/10.1056/NEJMoa041974

11. Heath EM, Chan SM, Minden MD, Murphy T, Shlush LI, Schimmer AD. Biological and clinical consequences of NPM1 mutations in AML. Leukemia. 2017;31(4):798-807. https://doi.org/10.1038/leu.2017.30

12. Dohner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140(12):1345-77. https://doi.org/10.1182/blood.2022016867

13. Falini B, Brunetti L, Sportoletti P, Martelli MP. NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood. 2020;136(15):1707-21. https://doi.org/10.1182/blood.2019004226

14. Montalban-Bravo G, DiNardo CD. The role of IDH mutations in acute myeloid leukemia. Future Oncol. 2018;14(10):979-93. https://doi.org/10.2217/fon-2017-0523

15. Cerchione C, Romano A, Daver N, DiNardo C, Jabbour EJ, Konopleva M, et al. IDH1/IDH2 Inhibition in Acute Myeloid Leukemia. Front Oncol. 2021; 11:639387. https://doi.org/10.3389/fonc.2021.639387

16. Gorello P, Cazzaniga G, Alberti F, Dell'Oro MG, Gottardi E, Specchia G, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia. 2006;20(6):1103-8. https://doi.org/10.1038/sj.leu.2404149

17. Rakheja D, Mitui M, Boriack RL, DeBerardinis RJ. Isocitrate dehydrogenase 1/2 mutational analyses and 2-hydroxyglutarate measurements in Wilms tumors. Pediatr Blood Cancer. 2011;56(3):379-83. https://doi.org/10.1002/pbc.22697

18. Sharma N, Liesveld JL. NPM 1 Mutations in AML-The Landscape in 2023. Cancers (Basel). 2023;15(4). https://doi.org/10.3390/cancers15041177

19. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477-87. https://doi.org/10.1056/NEJMoa1409405

20. Falini B, Dillon R. Criteria for Diagnosis and Molecular Monitoring of NPM1-Mutated AML. Blood Cancer Discov. 2024;5(1):8-20. https://doi.org/10.1158/2643-3230.bcd-23-0144

21. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36(7):1703-19. https://doi.org/10.1038/s41375-022-01613-1

22. Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 2006;107(10):4011-20. https://doi.org/10.1182/blood-2005-08-3167

23. Heuser M, Freeman SD, Ossenkoppele GJ, Buccisano F, Hourigan CS, Ngai LL, et al. 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2021;138(26):2753-67. https://doi.org/10.1182/blood.2021013626

24. Pratz KW, Jonas BA, Pullarkat V, Recher C, Schuh AC, Thirman MJ, et al. Measurable Residual Disease Response and Prognosis in Treatment-Naive Acute Myeloid Leukemia with Venetoclax and Azacitidine. J Clin Oncol. 2022;40(8):855-65. https://doi.org/10.1200/jco.21.01546

25. Venditti A, Piciocchi A, Candoni A, Melillo L, Calafiore V, Cairoli R, et al. GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia. Blood. 2019;134(12):935-45. https://doi.org/10.1182/blood.2018886960

26. Meggendorfer M, Cappelli LV, Walter W, Haferlach C, Kern W, Falini B, et al. IDH1R132, IDH2R140 and IDH2R172 in AML: different genetic landscapes correlate with outcome and may influence targeted treatment strategies. Leukemia. 2018;32(5):1249-53. https://doi.org/10.1038/s41375-018-0026-z

27. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374(23):2209-21. https://doi.org/10.1056/NEJMoa1516192

28. Yen K, Travins J, Wang F, David MD, Artin E, Straley K, et al. AG-221, a First-in-Class Therapy Targeting Acute Myeloid Leukemia Harboring Oncogenic IDH2 Mutations. Cancer Discov. 2017;7(5):478-93. https://doi.org/10.1158/2159-8290.CD-16-1034

29. Merchant SL, Culos K, Wyatt H. Ivosidenib: IDH1 Inhibitor for the Treatment of Acute Myeloid Leukemia. J Adv Pract Oncol. 2019;10(5):494-500. https://doi.org/10.6004/jadpro.2019.10.5.7

30. Fruchtman H, Avigan ZM, Waksal JA, Brennan N, Mascarenhas JO. Management of isocitrate dehydrogenase 1/2 mutated acute myeloid leukemia. Leukemia. 2024;38(5):927-35. https://doi.org/10.1038/s41375-024-02246-2

31. Lachowiez CA, Reville PK, Kantarjian H, Jabbour E, Borthakur G, Daver N, et al. Contemporary outcomes in IDH-mutated acute myeloid leukemia: The impact of co-occurring NPM1 mutations and venetoclax-based treatment. Am J Hematol. 2022;97(11):1443-52. https://doi.org/10.1002/ajh.26694

32. Dunlap JB, Leonard J, Rosenberg M, Cook R, Press R, Fan G, et al. The combination of NPM1, DNMT3A, and IDH1/2 mutations leads to inferior overall survival in AML. Am J Hematol. 2019;94(8):913-20. https://doi.org/10.1002/ajh.25517

33. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366(12):1079-89. https://doi.org/10.1056/NEJMoa1112304

34. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Kronke J, Bullinger L, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010;28(22):3636-43. https://doi.org/10.1200/JCO.2010.28.3762

Descargas

Publicado

10-09-2025

Número

Sección

Artículos Originales