Construct validity of the PHQ-9 in university students in Colombia: A Rasch analysis approach
DOI:
https://doi.org/10.52379/mcs.v9.521Palabras clave:
Depresión, Psicometría, Cuestionario de Salud del Paciente, Reproducibilidad de los resultadosResumen
Introduction: The Patient Health Questionnaire 9 (PHQ-9) is one of the most widely used screening instruments for major depressive episodes. However, there are no published studies on Rasch-type analysis of the PHQ-9 among Spanish-speaking university students. Objective: To evaluate the psychometric properties of the PHQ-9 in university students using Rasch-type models and to assess possible biases of the items according to gender. Methods: This cross-sectional observational study evaluated the psychometric performance of the PHQ-9 in health sciences students at the University of Cartagena (Colombia). A random sampling stratified by academic program, semester, and sex was used, obtaining a sample of 550 participants (9 excluded for incomplete responses). Participants signed an informed consent, and the study was approved by an ethics committee. Rasch analysis was used to assess model fit, differential item functioning, dimensionality, local independence, and reliability. Adequate internal consistency (a=0.83, w=0.89) and factorial validity were found. Results: A cross-sectional study was conducted with 550 health science students from Colombian university. The data were analyzed using a Rasch model, in which the following psychometric characteristics were verified: 1) differential item functioning, 2) dimensionality and local independence, and 3) overall fit. Only item 2 showed a tendency toward differential functioning. Conclusions: One-dimensionality and local independence of the items, moderate reliability, and good general fit were found, although there was a gap between the degree of depression measured by the PHQ-9 and the participants' responses. The Spanish version of the PHQ-9 for Colombian university students showed adequate item-level psychometric properties for screening for major depressive episodes.
Descargas
Referencias
1. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606-13.
https://doi.org/10.1046/j.1525-1497.2001.016009606.x
2. Kroenke K, Stump TE, Chen CX, Kean J, Damush TM, Bair MJ et al. Responsiveness of PROMIS and Patient Health Questionnaire (PHQ) depression scales in three clinical trials. Health Qual. Life Outcomes. 2021;19(1):41. https://doi.org/10.1186/s12955-021-01674-3
3. Levis B, Benedetti A, Thombs BD; DEPRESsion Screening Data (DEPRESSD) Collaboration. Accuracy of Patient Health Questionnaire-9 (PHQ-9) for screening to detect major depression: individual participant data meta-analysis. BMJ. 2019;365:1476. https://doi.org/10.1136/bmj.l1476
4. Negeri ZF, Levis B, Sun Y, He C, Krishnan A, Wu Y et al. Accuracy of the Patient Health Questionnaire-9 for screening to detect major depression: Updated systematic review and individual participant data meta-analysis. BMJ. 2021;375:n2183. https://doi.org/10.1136/bmj.n2183
5. El-Den S, Chen TF, Gan YL, Wong E, O'Reilly CL. The psychometric properties of depression screening tools in primary healthcare settings: A systematic review. J Affect Disord. 2018;225:503-22. https://doi.org/10.1016/j.jad.2017.08.060
6. Levis B, Benedetti A, Levis AW, Ioannidis JPA, Shrier I, Cuijpers P, et al. Selective Cutoff Reporting in Studies of Diagnostic Test Accuracy: A Comparison of Conventional and Individual-Patient-Data Meta-Analyses of the Patient Health Questionnaire-9 Depression Screening Tool. Am J Epidemiol. 2017185(10):954-64. https://doi.org/10.1093/aje/kww191
7. Manea L, Boehnke JR, Gilbody S, Moriarty AS, McMillan D. Are there researcher allegiance effects in diagnostic validation studies of the PHQ-9? A systematic review and meta-analysis. BMJ Open. 2017;7(9):e015247. https://doi.org/10.1136/bmjopen-2016-015247
8. Wu Y, Levis B, Riehm KE, Saadat N, Levis AW, Azar M, et al. Equivalency of the diagnostic accuracy of the PHQ-8 and PHQ-9: a systematic review and individual participant data meta-analysis. Psychol Med. 2020;50(8):1368-80. https://doi.org/10.1017/s0033291719001314
9. Gilbody S, Richards D, Brealey S, Hewitt C. Screening for depression in medical settings with the Patient Health Questionnaire (PHQ): a diagnostic meta-analysis. J Gen Intern Med. 2007;22(11):1596-602. https://doi.org/10.1007/s11606-007-0333-y
10. Martin A, Rief W, Klaiberg A, Braehler E. Validity of the Brief Patient Health Questionnaire Mood Scale (PHQ-9) in the general population. Gen Hosp Psychiatry. 2006;28(1):71-7. https://doi.org/10.1016/j.genhosppsych.2005.07.003
11. Cassiani-Miranda CA, Scoppetta O. Factorial structure of the Patient Health Questionnaire-9 as a depression screening instrument for university students in Cartagena, Colombia. Psychiatry Res. 2018;269:425-49. https://doi.org/10.1016/j.psychres.2018.08.071
12. Ghazisaeedi M, Mahmoodi H, Arpaci I, Mehrdar S, Barzegari S. Validity, reliability, and optimal cut-off scores of the WHO-5, PHQ-9, and PHQ-2 to screen depression among university students in Iran. Int J Ment Health Addict. 2022;20(3):1824-33. https://doi.org/10.1007/s11469-021-00483-5
13. Keum BT, Miller MJ, Inkelas KK. Testing the factor structure and measurement invariance of the PHQ-9 across racially diverse U.S. college students. Psychol Assess. 2018;30(8):1096-106. https://doi.org/10.1037/pas0000550
14. Makhubela M, & Khumalo IP. Psychometric evaluation of the PHQ-9 in university students: Factorial validity and measurement equivalence across three African countries. Current psychology. 2022. https://doi.org/10.1007/s12144-022-02997-0
15. Rahman MA, Dhira TA, Sarker AR, Mehareen J. Validity and reliability of the Patient Health Questionnaire scale (PHQ-9) among university students of Bangladesh. PLoS One. 2022;17(6):e0269634. https://doi.org/10.1371/journal.pone.0269634
16. Zhang YL, Liang W, Chen ZM, Zhang HM, Zhang JH, Weng XQ et al. Validity and reliability of Patient Health Questionnaire-9 and Patient Health Questionnaire-2 to screen for depression among college students in China. Asia Pac Psychiatry. 2013;5(4):268-75. https://doi.org/10.1111/appy.12103
17. Marosszeky N, Shores EA, Jones MP, Sadeghi R. A Psychometric replication of fan (1998) item response theory and classical test theory: An empirical comparison of their Item/Person Statistics. J Appl Meas. 2020;21(4):456-80. URL
18. Zhao Y, Hambleton RK. Practical consequences of item response theory model misfit in the context of test equating with mixed-format test data. Front Psychol. 2017;8:484. https://doi.org/10.3389/fpsyg.2017.00484
19. Thomas ML. Advances in applications of item response theory to clinical assessment. Psychol Assess. 2019;31(12):1442-55. https://doi.org/10.1037/pas0000597
20. Tijmstra J, Bolsinova M, Jeon M. General mixture item response models with different item response structures: Exposition with an application to Likert scales. Behav Res Methods. 2018;50(6):2325-44. https://doi.org/10.3758/s13428-017-0997-0
21. Carroll HA, Hook K, Perez OFR, Denckla C, Vince CC, Ghebrehiwet S, et al. Establishing reliability and validity for mental health screening instruments in resource-constrained settings: Systematic review of the PHQ-9 and key recommendations. Psychiatry Res. 2020;291:113236. https://doi.org/10.1016/j.psychres.2020.113236
22. de Joode JW, van Dijk SEM, Walburg FS, Bosmans JE, van Marwijk HWJ, et al. Diagnostic accuracy of depression questionnaires in adult patients with diabetes: A systematic review and meta-analysis. PLoS One. 2019;14(6):e0218512. https://doi.org/10.1371/journal.pone.0218512
23. Fekadu A, Demissie M, Birhane R, Medhin G, Bitew T, Hailemariam M, et al. Under detection of depression in primary care settings in low and middle-income countries: a systematic review and meta-analysis. Syst Rev. 2022;11(1):21. https://doi.org/10.1186/s13643-022-01893-9
24. Kaggwa MM, Najjuka SM, Ashaba S, Mamun MA. Psychometrics of the Patient Health Questionnaire (PHQ-9) in Uganda: A systematic review. Front Psychiatry. 2022 Mar 7;13:781095. https://doi.org/10.3389/fpsyt.2022.781095
25. Kim S, Lee K. Screening for depression in mobile devices using Patient Health Questionnaire-9 (PHQ-9) Data: A diagnostic meta-analysis via machine learning methods. Neuropsychiatr Dis Treat. 2021;17:3415-30. https://doi.org/10.2147/ndt.s339412
26. Manea L, Gilbody S, McMillan D. A diagnostic meta-analysis of the Patient Health Questionnaire-9 (PHQ-9) algorithm scoring method as a screen for depression. Gen Hosp Psychiatry. 2015;37(1):67-75. https://doi.org/10.1016/j.genhosppsych.2014.09.0091.
27. Moriarty AS, Gilbody S, McMillan D, Manea L. Screening and case finding for major depressive disorder using the Patient Health Questionnaire (PHQ-9): a meta-analysis. Gen Hosp Psychiatry. 2015;37(6):567-76. https://doi.org/10.1016/j.genhosppsych.2015.06.012
28. Pettersson A, Bostrom KB, Gustavsson P, Ekselius L. Which instruments to support diagnosis of depression have sufficient accuracy? A systematic review. Nord J Psychiatry. 2015;69(7):497-508. https://doi.org/10.3109/08039488.2015.1008568
29. Yin L, Teklu S, Pham H, Li R, Tahir P, Garcia ME. Validity of the Chinese language Patient Health Questionnaire 2 and 9: A systematic review. Health Equity. 2022 ;6(1):574-94. https://doi.org/10.1089/heq.2022.0030
30. Hobart JC, Cano SJ, Zajicek JP, Thompson AJ. Rating scales as outcome measures for clinical trials in neurology: problems, solutions, and recommendations. Lancet Neurol. 2007;6(12):1094-105. https://doi.org/10.1016/s1474-4422(07)70290-9
31. Packham T, MacDermid JC. Measurement properties of the patient-rated wrist and hand evaluation: rasch analysis of responses from a traumatic hand injury population. J Hand Ther. 2013 Jul-Sep;26(3):216-23; quiz 224. https://doi.org/10.1016/j.jht.2012.12.006
32. Hays RD, Morales LS, Reise SP. Item response theory and health outcomes measurement in the 21st century. Med Care. 2000;38(9 Suppl):II28-42. https://doi.org/10.1097/00005650-200009002-00007
33. Nguyen TH, Lee CS, Kim MT. Using item response theory to develop and refine patient-reported outcome measures. Eur J Cardiovasc Nurs. 2022;21(5):509-15. https://doi.org/10.1093/eurjcn/zvac020
34. Stover AM, McLeod LD, Langer MM, Chen WH, Reeve BB. State of the psychometric methods: patient-reported outcome measure development and refinement using item response theory. J Patient Rep Outcomes. 2019;3(1):50. https://doi.org/10.1186/s41687-019-0130-5
35. Ware JE Jr. Conceptualization and measurement of health-related quality of life: comments on an evolving field. Arch Phys Med Rehabil. 2003;84(4 Suppl 2):S43-51. https://doi.org/10.1053/apmr.2003.50246
36. Edelen MO, Reeve BB. Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Qual Life Res. 2007;16 Suppl 1:5-18. https://doi.org/10.1007/s11136-007-9198-0
37. Jiraniramai S, Wongpakaran T, Angkurawaranon C, Jiraporncharoen W, Wongpakaran N. Construct validity and differential item functioning of the phq-9 among health care workers: rasch analysis approach. Neuropsychiatr Dis Treat. 2021;17:1035-45. https://doi.org/10.2147/ndt.s271987
38. Cappelleri JC, Jason Lundy J, Hays RD. Overview of classical test theory and item response theory for the quantitative assessment of items in developing patient-reported outcomes measures. Clin Ther. 2014;36(5):648-62. https://doi.org/10.1016/j.clinthera.2014.04.006
39. Hambleton RK, Russell WJ. Comparison of classical test theory and item response theory and their applications to test development. An NCME instructional module. 2005. http://dx.doi.org/10.1111/j.1745-3992.1993.tb00543.x
40. He Q, Wheadon C. Using the dichotomous Rasch model to analyze polytomous items. J Appl Meas. 2013;14(1):44-56. https://pubmed.ncbi.nlm.nih.gov/23442327/
41. Tennant A, Conaghan PG. The Rasch measurement model in rheumatology: what is it and why use it? When should it be applied, and what should one look for in a Rasch paper? Arthritis Rheum. 2007;57(8):1358-62. https://doi.org/10.1002/art.23108
42. Christensen KS, Oernboel E, Zatzick D, Russo J. Screening for depression: Rasch analysis of the structural validity of the PHQ-9 in acutely injured trauma survivors. J Psychosom Res. 2017;97:18-22. https://doi.org/10.1016/j.jpsychores.2017.03.117
43. Reich H, Rief W, Brahler E, Mewes R. Cross-cultural validation of the German and Turkish versions of the PHQ-9: An IRT approach. BMC.2018; 6(1), 26. https://doi.org/10.1186/s40359-018-0238-z
44. Adler M, Hetta J, Isacsson G, Brodin U. An item response theory evaluation of three depression assessment instruments in a clinical sample. BMC Med Res Methodol. 2012;12:84. https://doi.org/10.1186/1471-2288-12-84
45. Martins Barroso S, Souto Melo AP, da Silva MA, Crosland Guimaraes M. D. Evaluation of the Brazilian version of Patient Health Questionnaire (PHQ-9) in Quilombola population using the Item Response Theory. Salud Ment. 2019;42(1):43-50. https://doi.org/10.17711/SM.0185-3325.2019.006
46. Barthel D, Barkmann C, Ehrhardt S, Schoppen S, Bindt C; International CDS Study Group. Screening for depression in pregnant women from Cote dIvoire and Ghana: Psychometric properties of the Patient Health Questionnaire-9. J Affect Disord. 2015;187:232-40. https://doi.org/10.1016/j.jad.2015.06.042
47. Boulton AJ, Tyner CE, Choi SW, Sander AM, Heinemann AW, Bushnik T, et al. Linking the GAD-7 and PHQ-9 to the TBI-QOL anxiety and depression item banks. J Head Trauma Rehabil. 2019;34(5):353-63. https://doi.org/10.1097/htr.0000000000000529
48. Brodey BB, Goodman SH, Baldasaro RE, Brooks-DeWeese A, Wilson ME, Brodey IS, et al. Development of the Perinatal Depression Inventory (PDI)-14 using item response theory: a comparison of the BDI-II, EPDS, PDI, and PHQ-9. Arch Womens Ment Health. 2016;19(2):307-16. https://doi.org/10.1007/s00737-015-0553-9
49. Choi SW, Schalet B, Cook KF, Cella D. Establishing a common metric for depressive symptoms: linking the BDI-II, CES-D, and PHQ-9 to PROMIS depression. Psychol Assess. 2014;26(2):513-27. https://doi.org/10.1037/a0035768
50. Cumbe VFJ, Muanido A, Manaca MN, Fumo H, Chiruca P, Hicks L, et al. Validity and item response theory properties of the Patient Health Questionnaire-9 for primary care depression screening in Mozambique (PHQ-9-MZ). BMC Psychiatry. 2020;20(1):382. d https://doi.org/10.1186/s12888-020-02772-0
51. Donk LJ, Bickel EA, Krijnen WP, Tovote KA, Sanderman R, Schroevers MJ, et al. The value of distinct depressive symptoms (PHQ-9) to differentiate depression severity in cancer survivors: An item response approach. Psychooncology. 2019;28(11):2240-3. https://doi.org/10.1002/pon.5192
52. Fischer HF, Tritt K, Klapp BF, Fliege H. How to compare scores from different depression scales: equating the Patient Health Questionnaire (PHQ) and the ICD-10-Symptom Rating (ISR) using item response theory. Int J Methods Psychiatr Res. 2011;20(4):203-14. https://doi.org/10.1002/mpr.350
53. Forkmann T, Gauggel S, Spangenberg L, Brähler E, Glaesmer H. Dimensional assessment of depressive severity in the elderly general population: psychometric evaluation of the PHQ-9 using Rasch Analysis. J Affect Disord. 2013;148(2-3):323-30. https://doi.org/10.1016/j.jad.2012.12.019
54. Gothwal VK, Bagga DK, Sumalini R. Rasch validation of the PHQ-9 in people with visual impairment in South India. J Affect Disord. 2014;167:171-7. https://doi.org/10.1016/j.jad.2014.06.019
55. Horton M, Perry AE. Screening for depression in primary care: a Rasch analysis of the PHQ-9. BJ Psych Bull. 2016;40(5):237-43. https://doi.org/10.1192/pb.bp.114.050294
56. Huang XJ, Ma HY, Wang XM, Zhong J, Sheng DF, Xu MZ. Equating the PHQ-9 and GAD-7 to the HADS depression and anxiety subscales in patients with major depressive disorder. J Affect Disord. 2022;311:327-35. https://doi.org/10.1016/j.jad.2022.05.079
57. Kendel F, Wirtz M, Dunkel A, Lehmkuhl E, Hetzer R, Regitz-Zagrosek V. Screening for depression: Rasch analysis of the dimensional structure of the PHQ-9 and the HADS-D. J Affect Disord. 2010;122(3):241-6. https://doi.org/10.1016/j.jad.2009.07.004.
58. Lamoureux EL, Tee HW, Pesudovs K, Pallant JF, Keeffe JE, Rees G. Can clinicians use the PHQ-9 to assess depression in people with vision loss? Optom Vis Sci. 2009;86(2):139-45. https://doi.org/10.1097/opx.0b013e318194eb47
59. Liegl G, Wahl I, Berghöfer A, Nolte S, Pieh C, Rose M, et al. Using Patient Health Questionnaire-9 item parameters of a common metric resulted in similar depression scores compared to independent item response theory model reestimation. J Clin Epidemiol. 2016;71:25-34. https://doi.org/10.1016/j.jclinepi.2015.10.006
60. Ma S, Yang J, Yang B, Kang L, Wang P, Zhang N, et al. The Patient Health Questionnaire-9 vs. the Hamilton rating scale for depression in assessing major depressive disorder. Front Psychiatry. 2021;12:747139. https://doi.org/10.3389/fpsyt.2021.747139
61. Pedersen SS, Mathiasen K, Christensen KB, Makransky G. Psychometric analysis of the Patient Health Questionnaire in Danish patients with an implantable cardioverter defibrillator (The DEFIB-WOMEN study). J Psychosom Res. 2016;90:105-112. https://doi.org/10.1016/j.jpsychores.2016.09.010
62. Smith AB, Rush R, Wright P, Stark D, Velikova G, Sharpe M. Validation of an item bank for detecting and assessing psychological distress in cancer patients. Psychooncology. 2009;18(2):195-9. https://doi.org/10.1002/pon.1423
63. Stochl J, Fried EI, Fritz J, Croudace TJ, Russo DA, Knight C, et al. On dimensionality, measurement invariance, and suitability of sum scores for the PHQ-9 and the GAD-7. Assessment. 2022;29(3):355-66. https://doi.org/10.1177/1073191120976863
64. Teymoori A, Real R, Gorbunova A, Haghish EF, Andelic N, Wilson L, et al. Measurement invariance of assessments of depression (PHQ-9) and anxiety (GAD-7) across sex, strata and linguistic backgrounds in a European-wide sample of patients after traumatic brain injury. J Affect Disord. 2020;262:278-85. https://doi.org/10.1016/j.jad.2019.10.035
65. Umegaki Y, Todo N. Psychometric properties of the Japanese CES-D, SDS, and PHQ-9 depression scales in university students. Psychol Assess. 2017;29(3):354-9. https://doi.org/10.1037/pas0000351
66. Wahl I, Löwe B, Bjorner JB, Fischer F, Langs G, Voderholzer U, et al. Standardization of depression measurement: a common metric was developed for 11 self-report depression measures. J Clin Epidemiol. 2014;67(1):73-86. https://doi.org/10.1016/j.jclinepi.2013.04.019
67. Williams RT, Heinemann AW, Bode RK, Wilson CS, Fann JR, Tate DG. Improving measurement properties of the Patient Health Questionnaire-9 with rating scale analysis. Rehabil Psychol. 2009;54(2):198-203. https://doi.org/10.1037/a0015529
68. Zhong Q, Gelaye B, Fann JR, Sanchez SE, Williams MA. Cross-cultural validity of the Spanish version of PHQ-9 among pregnant Peruvian women: a Rasch item response theory analysis. J Affect Disord. 2014;158:148-53. https://doi.org/10.1016/j.jad.2014.02.012
69. Akhtar P, Ma L, Waqas A, Naveed S, Li Y, Rahman A, et al. Prevalence of depression among university students in low and middle income countries (LMICs): a systematic review and meta-analysis. J Affect Disord. 2020;274:911-9. https://doi.org/10.1016/j.jad.2020.03.183
70. Liu XQ, Guo YX, Zhang WJ, Gao WJ. Influencing factors, prediction and prevention of depression in college students: A literature review. World J Psychiatry. 2022;12(7):860-73. https://doi.org/10.5498/wjp.v12.i7.860
71. Arun P, Ramamurthy P, Thilakan P. Indian medical students with depression, anxiety, and suicidal behavior: why do they not seek treatment? Indian J Psychol Med. 2022;44(1):10-6. https://doi.org/10.1177/0253717620982326
72. Atienza-Carbonell B, Guillén V, Irigoyen-Otiñano M, Balanzá-Martínez V. Screening of substance use and mental health problems among Spanish medical students: A multicenter study. J Affect Disord. 2022;311:391-8. https://doi.org/10.1016/j.jad.2022.05.090
73. Kyriazos TA. Applied psychometrics: Sample size and sample power considerations in factor analysis (EFA, CFA) and SEM in general. Psychology. 2018;09(08):2207-30. https://doi.org/10.4236/psych.2018.98126
74. Kocalevent RD, Hinz A, Brähler E. Standardization of the depression screener patient health questionnaire (PHQ-9) in the general population. Gen Hosp Psychiatry. 2013;35(5):551-5. https://doi.org/10.1016/j.genhosppsych.2013.04.006
75. Spitzer RL, Williams JB, Kroenke K, Hornyak R, McMurray J. Validity and utility of the PRIME-MD patient health questionnaire in assessment of 3000 obstetric-gynecologic patients: the PRIME-MD Patient Health Questionnaire obstetrics-gynecology study. Am J Obstet Gynecol. 2000;183(3):759-69. https://doi.org/10.1067/mob.2000.106580
76. Cassiani-Miranda CA, Vargas-Hernández MC, Pérez-Anibal E, Herazo-Bustos MI, Hernández-Carrillo M. Confiabilidad y dimensionalidad del PHQ-9 en el cribado de síntomas de depresión en estudiantes de ciencias de la salud de Cartagena, 2014. Biomedica. 2017;37(0):112-20. https://doi.org/10.7705/biomedica.v37i0.3221
77. Cassiani-Miranda CA, Pérez-Aníbal E, Vargas-Hernández MC, Herazo-Bustos M. Validez de apariencia y adaptación del PHQ-9 para la detección de síntomas depresivos en estudiantes universitarios de ciencias de la salud Cartagena (Colombia). Salud uninorte. 2018; 34(1):75-87. http://dx.doi.org/10.14482/sun.34.1.9154
78. Cassiani-Miranda CA, Cuadros-Cruz AK, Torres-Pinzón H, Scoppetta O, Pinzón-Tarrazona JH, López-Fuentes WY, et al. Validity of the Patient Health Questionnaire-9 (PHQ-9) for depression screening in adult primary care users in Bucaramanga, Colombia. Rev Colomb Psiquiatr (Engl Ed). 2021;50(1):11-21. https://doi.org/10.1016/j.rcp.2019.09.001
79. Bond T. Applying the Rasch Model: Fundamental Measurement in the Human Sciences, (3rd ed.). Routledge. 2015. https://doi.org/10.4324/9781315814698
80. Rasch G. Studies in mathematical psychology: I. Probabilistic models for some intelligence and attainment tests. Nielsen & Lydiche. 1960.
81. Linacre JM. WINSTEPS Rasch measurement computer program User’s Guide. 2022.Version 5.3.2.
82. Lambert S, Pallant JF, Girgis A. Rasch analysis of the Hospital Anxiety and Depression Scale among caregivers of cancer survivors: implications for its use in psycho-oncology. Psychooncology. 2011;20(9):919-25. https://doi.org/10.1002/pon.1803
83. Linacre JM. Advancing the Metrological Agenda in the Social Sciences. In W. P. Fisher, & S. J. Cano (Eds.), Person-Centered Outcome Metrology (pp. 165-193). Springer International Publishing. 2023. https://doi.org/10.1007/978-3-031-07465-3_7
84. Scoppetta O, Pardo Adames C, Aguilar-Pardo D, & Barreto I. Evidencia Complementaria para la Validación de la Escala SRAS de Altruismo en Colombia. [Complementary evidence for the validation of the altruism SARS scale in Colombia]. Rev. Iberoam. de Diagnostico y Evaluacion Psicol. 2021;58(1):47-55. https://doi.org/10.21865/RIDEP58.1.04
85. Zwick R. A review of its differential item functioning assessment procedures: flagging rules, minimum sample size requirements, and criterion refinement. ETS research report. 2012;2012(1), i-30. https://doi.org/10.1002/j.2333-8504.2012.tb02290.x
86. Bi Y, Wang L, Cao C, Fang R, Li G, Liu P, et a. The factor structure of major depressive symptoms in a sample of Chinese earthquake survivors. BMC Psychiatry. 2021;21(1):59. https://doi.org/10.1186/s12888-020-02993-3
87. Cassiani-Miranda CA, Scoppetta O, Cabanzo-Arenas DF. Validity of the Hospital Anxiety and Depression Scale (HADS) in primary care patients in Colombia. Gen Hosp Psychiatry. 2022;74:102-9. https://doi.org/10.1016/j.genhosppsych.2021.01.014
88. Tsai J, Elhai JD, Pietrzak RH, Hoff RA, Harpaz-Rotem I. Comparing four competing models of depressive symptomatology: a confirmatory factor analytic study of 986,647 U.S. veterans. J Affect Disord. 2014;165:166-9. https://doi.org/10.1016/j.jad.2014.04.075
89. Christensen KS, Oernboel E, Nielsen MG, Bech P. Diagnosing depression in primary care: a Rasch analysis of the Major Depression Inventory. Scand J Prim Health Care. 2019;37(2):256-63. https://doi.org/10.1080/02813432.2019.1608039
90. Belmans E, Bastin M, Raes F, Bijttebier P. Temporal associations between social anxiety and depressive symptoms and the role of interpersonal stress in adolescents. Depress Anxiety. 2019;36(10):960-7. https://doi.org/10.1002/da.22939
91. Zbozinek TD, Rose RD, Wolitzky-Taylor KB, Sherbourne C, Sullivan G, Stein MB, et al. Diagnostic overlap of generalized anxiety disorder and major depressive disorder in a primary care sample. Depress Anxiety. 2012;29(12):1065-71. https://doi.org/10.1002/da.22026
92. Stein DJ, Scott KM, de Jonge P, Kessler RC. Epidemiology of anxiety disorders: from surveys to nosology and back. Dialogues Clin Neurosci. 2017;19(2):127-36. https://doi.org/10.31887/dcns.2017.19.2/dstein
93. Wind SA, & Gale JD. Diagnostic opportunities using Rasch measurement in the context of a misconceptions-based physical science assessment: distractor analysis with Rasch measurement theory. Science education. 2015;99(4):721-41. https://doi.org/10.1002/sce.21172
94. Reise SP, Du H, Wong EF, Hubbard AS, Haviland MG. Matching IRT models to patient-reported outcomes constructs: the graded response and log-logistic models for scaling depression. Psychometrika. 2021;86(3):800-24. https://doi.org/10.1007/s11336-021-09802-0
95. Harris D. Comparison of 1-, 2-, and 3-parameter IRT models. Educational measurement: issues and practice. 1989; 8(1), 35-41. https://doi.org/10.1111/j.1745-3992.1989.tb00313.x
96. Kroenke K, Spitzer RL, Williams JB, Lowe B. The Patient Health Questionnaire Somatic, Anxiety, and Depressive Symptom Scales: a systematic review. Gen Hosp Psychiatry. 2010;32(4):345-59. https://doi.org/10.1016/j.genhosppsych.2010.03.006
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Carlos Arturo Cassiani-Miranda, Orlando Scoppetta, María Alejandra Barrios-Villadiego, Andrés Felipe Tirado-Otálvaro, Andrea Carolina Duran-Bedoya

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.